爱看书吧

爱看书吧 > 其他小说 > 数学心蔡泽禹 > 正文 第一百四十八章 米勒拉宾素性测试(计算数论)

正文 第一百四十八章 米勒拉宾素性测试(计算数论)第1页/共1页

本站最新域名:m.ikbook8.com
老域名即将停用!

    对于一个数n,如果想要判断它是否为素数,常规的方法为试除法。即,让n依次除以2到sqrt(n)以内的整数。如果有出现除尽的情况,则为合数。

    该方法的时间复杂度为o(sqrt(n))在面对n为长整型的时候有可能超出时间要求。因此普遍采用米勒拉宾算法进行素性判定。

    在此之前介绍一种伪素数判定方法——小费马定理。

    但没有米勒拉宾素性测试快。

    米勒拉宾素性测试是:

    判断一个数p是否为素数

    p首先得为大于等于2的正整数才有可能为素数,

    首先判奇偶,若为偶数只有2为素数,

    若为奇数(这里可以考虑去掉 3甚至5的倍数),则先求出d。

    对于每一个底a,让d不断乘以2直到为(p-1)/2,

    在此过程中(包括原本的d与d=(p-1)/2时的情况),

    设t为 a的d次方模p的余数,

    (1)当t=-1时跳出,声明p有可能为素数

    (2)当t=1时,若d为奇数,跳出声明p有可能为素数,否则跳出声明p必为合数

    (3)当d=(p-1)/2时跳出,声明p必为合数。

    喜欢数学心请大家收藏:数学心m.bayizww.com网更新速度全网最快。

    
\/阅|读|模|式|内|容|加|载|不|完|整|,退出可阅读完整内容|点|击|屏|幕|中|间可|退|出|阅-读|模|式|.
『加入书签,方便阅读』