爱看书吧

爱看书吧 > 其他小说 > 数学心蔡泽禹 > 正文 第五百五十六章 巴拿赫-塔斯基悖论(集合论)

正文 第五百五十六章 巴拿赫-塔斯基悖论(集合论)(第1页/共2页)

本站最新域名:m.ikbook8.com
老域名即将停用!

    “分球怪论”,是一条数学定理。 1924年,斯特凡·巴拿赫和阿尔弗莱德·塔斯基首次提出这一定理。这一定理指出在选择公理成立的情况下可以将一个三维实心球分成有限(不勒贝格可测的)部分,然后仅仅通过旋转和平移到其他地方重新组合,不过要旋转(不可列)无穷次,可以组成两个半径和原来相同的完整的球。巴拿赫和塔斯基提出这一定理原意是想拒绝选择公理,但该证明很自然,因此数学家认为这仅意味着选择公理可以导致少数令人惊讶和反直觉的结果。

    假设旅馆有无限个房间,把这无限个房间按照一定的分类规则分成两类,并把这两类房间分开,分别称为“旅馆a”和“旅馆b”。

    除去每个房间编号的问题,那么超模君请大家思考:这两个新的旅馆,和原来的“希尔伯特旅馆”有区别吗?

    我们都知道答案:没有区别,两个新旅馆,和原来的旅馆一模一样,房间数一样,每个房间的大小也一样。

    同样的,我们往下对“巴拿赫-塔斯基分球定理”这个“无穷”的概念做一个更深层次的理解。

    一个三维实心球,必定存在一种办法分成有限部分,然后仅仅通过旋转和平移,就可以组成两个和原来完全相同的球(半径相同,密度相同……所有性质都相同)。

    超模君初看这个定理就觉得违反了人类的直觉常识,假设球体的体积或质量是一定的,通过旋转或者平移以后这些碎片的总体积或总质量应该也是不变的,拼起来后也不可能会变成1=1+1啊,这不就是个悖论吗?

    这个定理还有更强的版本描述:

    一块石头经过分解,可以随意组合成任何东西,可以拼成一个星球,也可以拼成一个人,甚至藏进一个细胞之中!

    有画面了吗?可以用一个石头去拼接星球,也可以去创造一个世界。

    咳咳,说过了,让我们先从梦中醒来,详细地了解一下这个定理的强大与神奇。

    时间回到1924年的一天,又是一个美好又平静的早晨。就在这个伟大的日子,两位数学家斯特凡·巴拿赫(stefan banach)和阿尔弗雷德·塔斯基(alfred tarski)提出一个反常识的定理,人称“分球怪论”。

    他们当时发表了一篇论文来概述这个理论:

    把一个三维的半径为1的实心球用某种巧妙方法分成五等分——五等分的意思是,把其中一份旋转平移后可以和另外一份重合——然后把这五个分块旋转平移后,可以组合成两个半径为1的实心球。

    简单的说,一
\/阅|读|模|式|内|容|加|载|不|完|整|,退出可阅读完整内容|点|击|屏|幕|中|间可|退|出|阅-读|模|式|.
『加入书签,方便阅读』
-->> 本章未完,点击下一页继续阅读(第1页/共2页)